
xmlwebgui Documentation
by Lars Trieloff

Documentation for xmlwebgui, a validating xml editor
by Lars Trieloff

Table of Contents

Chapter 1. Installation
System Requirements 1
Getting xmlwebgui 1
Deploying the xmlwebgui web application 1

Chapter 2. Running the examples
The modified document 10

Chapter 3. Customizing xmlwebgui
URL parameters 11
Setting the servlet's parameters 11

setting the rootDir parameter 11
User-Management and security 11
exit and error URL 12

Using custom DTDs 12
Using custom templates 13
Defining own Cascading Stylesheets 13
Modifying the entry page 14
Defining own XSL Stylesheets 14

Chapter 4. Building xmlwebgui from source code
Appendix A. Apache Software License

List of Figures

Figure 2.1. The welcome screen 3
Figure 2.2. selecting an element 4
Figure 2.3. inserting a child element 4
Figure 2.4. inserting text 5
Figure 2.5. selecting text to be changed 5
Figure 2.6. saving changes to the text 6
Figure 2.7. showing the attributes 7
Figure 2.8. choosing the right attribute value 8
Figure 2.9. saving changes 9

List of Examples

Example 3.1. Default configuration 11
Example 3.2. the default session validator 12
Example 3.3. the default session id parameter name 12
Example 3.4. unrestricted access 12
Example 3.5. adressing the Docbook DTD 13
Example 3.6. adressing the WML DTD 13
Example 3.7. adressing the Simplesite DTD 13
Example 3.8. DTDstyle for XHTML 14

Chapter 1. Installation

System Requirements
xmlwebgui requires the following systems to be already installed in your system:

• Java Virtual Machine A Java 1.2 or later compatible virtual machine must be present for usage of xmlwe-
bgui

Tip

Note that all servlet engines require a JVM to run so if you are already using servlets you already have
one installed.

• Servlet Engine A Servlet 2.2 compliant servlet engine must be present in order to support servlet operation
and dynamic request handling.

If you don't have a servlet engine installed, well, stop right here and go to the Apache Tomcat project
http://jakarta.apache.org/tomcat/ [http://jakarta.apache.org/tomcat/] then come back when you are done.

Getting xmlwebgui
You have three choices for getting xmlwebgui: You can eighter download a binary release, or you can download
a source release or you get the latest development version from CVS . In the last two cases you have to build
xmlwebgui on your own. Please read the appendix Building xmlwebgui from source code

Getting the binary release. You can simply download the binary distribution from the projects download page
[http://sourceforge.net/project/showfiles.php?group_id=43829] at sourceforge. Select a file of the type .zip .

Getting the source release. You can simply download the source relase from the projects download page
[http://sourceforge.net/project/showfiles.php?group_id=43829] at sourceforge. Select a file of the type Source
.zip .

Getting the latest development version from CVS. xmlwebgui's SourceForge CVS repository can be checked
out through anonymous (pserver) CVS with the following instruction set. When prompted for a password for
anonymous, simply press the Enter key. Then type cvs -
d:pserver:anonymous@cvs.xmlwebgui.sourceforge.net:/cvsroot/xmlwebgui login
for loggin in to the CVS repository. For checking out the source code you will habe to type cvs -z3 -
d:pserver:anonymous@cvs.xmlwebgui.sourceforge.net:/cvsroot/xmlwebgui co
xmlwebgui .

Deploying the xmlwebgui web application
In most servlet engines, this is just a matter of copying the xmlwebgui.war file in a specific directory and
the engine will take care of installing it when restarted. In some servlet engines you will have to change the xml
parser used.

Deploying on Tomcat 3.2+. Tomcat currently uses a different version of the XML parser than xmlwebgui. To
get xmlwebgui to work, you need to perform the following steps:

1. Stop Tomcat Go to the tomcat/bin directory, and run the shutdown script.

2. Delete tomcat/lib/jaxp.jar Tomcat's jaxp.jar is 'sealed', and since xerces contains its own im-
plementation of the JAXP standard extension, Java will fail to load xerces and report a 'Package Sealing
Violation' if both are in the classpath.

3. Rename tomcat/lib/parser.jar to tomcat/lib/zparser.jar Tomcat's parser.jar con-

Chapter 1. Installation

1

http://jakarta.apache.org/tomcat/
http://sourceforge.net/project/showfiles.php?group_id=43829
http://sourceforge.net/project/showfiles.php?group_id=43829
http://sourceforge.net/project/showfiles.php?group_id=43829
http://sourceforge.net/project/showfiles.php?group_id=43829
http://sourceforge.net/project/showfiles.php?group_id=43829
http://sourceforge.net/project/showfiles.php?group_id=43829

tains older versions of some the same XML APIS that Xerces uses, and these will prevent Xerces from
functioning properly if they appear before Xerces in the classpath. Since Tomcat's startup scripts auto-
matically load all the jar files in tomcat/lib in name order, changing the name of the file causes it to
be loaded last in the classpath.

4. Copy wmlwebgui.war to xmlwebgui.zip and unpack it to a directory called xmlwebgui

5. Copy the xmlwebgui/lib/xerces.jar and xmlwebgui/lib/xalan.jar files to tomcat/
lib xmlwebgui will now be able to see and use the correct XML libraries.

6. Copy xmlwebgui.war into tomcat/webapps

7. Start Tomcat Go to the tomcat/bin directory, and run the startup script.

8. Start using xmlwebgui Access the URI http://localhost:8080/xmlwebgui/ with a DOM-conformant
browser1. Tomcat will unpack the xmlwebgui.war.

9. Edit xmlwebgui/WEB-INF/web.xml In this file you will find a parameter that must be customized to
make xmlwebgui run. Find the following part of the file

<context-param>
<param-name>rootDir</param-name>

<!-- Enter the base path for templates and results here -->
<param-value>C:/java/tomcat401/webapps/xmlwebgui/</param-value>

</context-param>
<context-param>

<param-name>applicationDir</param-name>
<!-- Enter the base path for the application here -->
<param-value>C:/java/tomcat401/webapps/xmlwebgui/</param-value>

</context-param>

Edit the paths that it points to your xmlwebgui installation directory.

Deploying on Tomcat 4.x. Tomcat 4.x is a really straight-forward installation

1. Stop Tomcat Go to the tomcat/bin directory, and run the shutdown script.

2. Copy xmlwebgui.war into tomcat/webapps

3. Start Tomcat Go to the tomcat/bin directory, and run the startup script.

4. Start using xmlwebgui Access the URI http://localhost:8080/xmlwebgui/ with a DOM-conform browser1.
Tomcat will unpack the xmlwebgui.war.

5. Edit xmlwebgui/WEB-INF/web.xml In this file you will find a parameter that must be customized to
make xmlwebgui run. Find the following part of the file

<context-param>
<param-name>rootDir</param-name>

<!-- Enter the base path for templates and results here -->
<param-value>C:/java/tomcat401/webapps/xmlwebgui/</param-value>

</context-param>
<context-param>

<param-name>applicationDir</param-name>
<!-- Enter the base path for the application here -->
<param-value>C:/java/tomcat401/webapps/xmlwebgui/</param-value>

</context-param>

Edit the path that it points to your xmlwebgui installation directory.

Deploying xmlwebgui on another servlet engine. Please refer to your servlet engine's documentation. FIXME
[http://info.astrian.net/jargon/terms/f/FIXME.html]

Chapter 1. Installation

2

http://localhost:8080/xmlwebgui/
http://localhost:8080/xmlwebgui/
http://info.astrian.net/jargon/terms/f/FIXME.html

1 xmlwebgui makes use of DOM 1 methods and properties as described in Peter Paul Koch's DOM Compatibility Table
[http://www.xs4all.nl/~ppk/js/version5.html]. Theese are supported by Mozilla [http://www.mozilla.org], Netscape 6
[http://home.netscape.com/computing/download/] or Microsoft Internet Explorer 5 [http://www.microsoft.com/windows/ie/] or higher.
2 wml is the root element of this document. Every document has exactly one root element.
3 This menu is currently empty, but there will be entries, when you select an element, where child elements can be appended. The corre-
sponding submenu buttons will be enabled automatically by xmlwebgui. When clicking one of this buttons, the element will be appended af-
ter the last child of the selected element.
4 This menu is currently empty, but there will be entries, when you select an element, where child elements can be inserted. The correspond-
ing submenu buttons will be enabled automatically by xmlwebgui. When clicking one of this buttons, the element will be inserted berfore
the selected element.
5 This menu allows you to insert text to elements.
6 selects the clicked element
8 removes the element from the document

Chapter 2. Running the examples
Im this chapter we are going to take a look at the example xml templates provided with xmlwebgui. This in-
cludes opening and saving of documents, modifying of elements, attributes and cdata sections.

The welcome screen. After having installed xmlwebgui point your DOM-conform bowser 1 to
http://localhost:8080/xmlwebgui/ and you will se the following screen

Figure 2.1. The welcome screen

This screen includes links to various examples an to this documentation. This time we will use the wml exam-
ple, so click on the corresponding link.

selecting an element. Now you are looking at the editing screen of xmlwebgui. This screen contains of the
editingwindow at the right side, where you can see the various elements and their text contents. In this example
you see a wml element 2 containing a card element, which contains a p element, wich stands for paragraph. At
the right side there are four menus, create Child Elements 3 , insert Child Elements 4 , Options and Text/CData 5
. Each element has six menu items. These are select element 6 , edit attributes 7, remove element 8, cut element

Chapter 2. Running the examples

3

http://www.xs4all.nl/~ppk/js/version5.html
http://www.xs4all.nl/~ppk/js/version5.html
http://www.xs4all.nl/~ppk/js/version5.html
http://www.mozilla.org
http://home.netscape.com/computing/download/
http://home.netscape.com/computing/download/
http://www.microsoft.com/windows/ie/
http://www.microsoft.com/windows/ie/
http://www.microsoft.com/windows/ie/
http://www.microsoft.com/windows/ie/
http://localhost:8080/xmlwebgui/

7 shows or hides the list of this element's attributes. This is also an indicator, which is green, if all attributes that are required have a value,
and which is red, if not all attributes which need to have a value assigned, really have one assigned.
9 cuts the element, it can be inserted again with Paste Before (inserts before the selected element) or Paste Child (inserts as last child of the
selected element) from the Options menu.
10 copies the element, it can be inserted again with Paste Before (inserts before the selected element) or Paste Child (inserts as last child of
the selected element) from the Options menu.
11 If this indicator is green, everything is ok, the element has the right count and order of child elements. If it has a red background, you will
have to take a look at the documentation for this kind of xml files, which child elements are allowed and wich are required inside this ele-
ment.

9, copy element 10 and an indicator for the content model 11.

Figure 2.2. selecting an element

selecting the p element

Click on the select element link of the p element to select it.

inserting a child element. After selecting an element, in the menu create Child Elements appear all types of el-
ements, which can be inserted as child elements of the selected p. Click on the button strong to insert a strong
element.

Figure 2.3. inserting a child element

After clicking, in the p element will appear a strong element. This strong element has a red marked content
model indicator. This means that you will have to insert more elements or a textnode. This is what is done in the
next step.

Chapter 2. Running the examples

4

inserting text to an element. In this step you will insert a textnode in the newly-created strong element. There-
fore you have to select the strong element by clicking on it's select element link.

Figure 2.4. inserting text

Now click on the button PCDATA in the Text/CDATA menu. This will insert a small paragraph containing the
text cdata in the strong element. In the next step you will change the content of the paragraphs textnode.

changing textual content. This is very simple. Just click on the text you want to change, it will turn from a
html- paragraph to a html-textarea, you enter the text of your choice and press the Ready-button to save your
changes.

Figure 2.5. selecting text to be changed

Chapter 2. Running the examples

5

Figure 2.6. saving changes to the text

Chapter 2. Running the examples

6

If you delete the whole text in the textarea, the textnode will be removed from the document. You can change
the text of the strong element the same way.

modifying attribute values. In order to modify the attribute values of an element, click on the link edit at-
tributes , this will make the list of attributes visible.

Figure 2.7. showing the attributes

Chapter 2. Running the examples

7

If you click this link again, it will hide the list of attributes. Editing attributes is quite the same like editing text
nodes, just click on the value of the attribute or it's name, and an input field or an select box will appear. After
having entered the right value click the Ready-Button again.

Figure 2.8. choosing the right attribute value

Chapter 2. Running the examples

8

Saving changes. After having edited the document, you can save the changes by clicking on save to save and
stay in the document or save & exit to return to the welcome screen.

Figure 2.9. saving changes

Chapter 2. Running the examples

9

The modified document
If you are interested, what you have clicked and typed in the last steps of this example open the file results/
wml.wml in your texteditor. What you will see looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN" "../DTD/wml/wml1.dtd">
<wml>

<card>
<p id="myp" align="center">

This is the content of the -p- Element

This is the content of the -strong-element

</p>
</card>

</wml>

This is the code of your document, all indents, line breaks and white spaces have been removed, but reinserted
for convienence in this example.

Chapter 2. Running the examples

10

Chapter 3. Customizing xmlwebgui

URL parameters
URL parameters are important for telling xmlwebgui which templates you want to be opened, which CSS
should be used for displaying the elements and under which filename the result should be saved. Following pa-
rameters are used:

template specifies the template which is going to be used. The filename is relative to the rooDir as de-
fined in WEB-INF/web.xml

styleurl specifies the stylesheet which will style the elements. The filename is relative to the rooDir
as defined in WEB-INF/web.xml

saveas Under which filename should the result be stored. The filename is relative to the rooDir as
defined in WEB-INF/web.xml

Every other parameter is passed through the xmlwebgui. This allows to preserve sessionids when switching
from your application to xmlwebgui and back to your application.

Setting the servlet's parameters
By setting the parameters of the xmlwebgui servlet you can control it's behaviour to fit into your application
framework.

setting the rootDir parameter

The rootDir parameter should point to the directory where XML Web GUI gets it's templates from and saves
it's restlts to.

security issues

Please remember that XML Web GUI adresses templates and results via relative paths and that moving
out of the rootDir is for security reasons not allowed.

Example 3.1. Default configuration

<context-param> <param-name>rootDir</param-name> <!-- Enter the base path for templates and re-
sults here --> <param-value>C:/java/tomcat401/webapps/xmlwebgui/</param-value>
</context-param>

User-Management and security

the session validator. The session validator is another security feature. This parameter should point to the URL
of a servlet or script of your application which accepts a POST-request with your application's common session
id included. This servlet should resolve the username or groupname of the user this session belongs to and re-
turn it.

For the case that you want to run XML Web GUI standalone or your application does not support multiple users
you will not need to change anything because a “Dummy-Session-Validator” is inclued in the XML Web GUI
distribution

Chapter 3. Customizing xmlwebgui

11

Example 3.2. the default session validator

<context-param> <param-name>sessionValidatorURL</param-name> <!-- Enter the url for validating the ses-
sion here --> <param-value>http://localhost:8080/xmlwebgui/username</param-value> </context-param>

defining the name of your session-id parameter. Edit this parameter that it matches your application's ses-
sion-id parameter name.

In most cases this is something like session or sid.

Example 3.3. the default session id parameter name

This is the default configuration of the session-id parameter name <context-param> sessionIdPa-
<param-name>rameterName</param-name> <!-- Enter the variable name of your webapp's session id here -->
<param-value>sessionid</param-value> </context-param>

the users.xml configuration file

In the users.xml configuration file the rights of users or usergroups are stored. After getting the username
from the session-validator XML Web GUI will look up this file to find out, if the user is allowed to read and
write this file or not.

The rules for specifing user rights are defined in users.dtd which is in the same directory.

The file contains the root element users which contains a sequence of at least one user elements. Each user
element needs to have the attribute name specified. This is an ID-attribute which means that every name can
only occur once in a document.

The content of user is a sequence of one read and one write element. Each read or write element con-
tains a sequence of allow and disallow elements. Theese elements are empty and have the pattern at-
tribute which contains a regular expression which the allowed or disallowed path has to match.

Example 3.4. unrestricted access

This example gains unlimited access to the filesystem for the user root. <user name="root"> <read> <allow
pattern=".*" /> </read> <write> <allow pattern=".*" /> </write> </user>

exit and error URL

The last two parameters exitUrl and errorUrl point to an URL that is accessed after saving and exiting
XML Web GUI or if an error occurs.

Using custom DTDs
XML Web GUI comes with a variety of DTDs, but of course you can use any other DTD for your documents or
even write an own.

For a wide choice of XML Applications
[http://dmoz.org/Computers/Data_Formats/Markup_Languages/XML/Applications/] and DTDs the open direc-

Chapter 3. Customizing xmlwebgui

12

http://dmoz.org/Computers/Data_Formats/Markup_Languages/XML/Applications/
http://dmoz.org/Computers/Data_Formats/Markup_Languages/XML/Applications/

tory project has an own category.

If you would like to write your own DTD, the ZVON DTD Tutorial
[http://www.zvon.org/xxl/DTDTutorial/General/book.html] is a recommended ressource.

Loading external DTD

You have three way to adress a DTD

• External HTTP reference. You can adress a DTD by referring to the URL of a DTD on another
server.

Example 3.5. adressing the Docbook DTD

http://www.oasis-open.org/committees/docbook/xml/4.1.2/docbookx.dtd

The advantage is that you can be sure that the DTD is always up-to-date. The disadvantage is that
every access to XML Web GUI will cause network traffic.

• File reference. You can also adress a DTD by referring to a file in your filesystem.

Example 3.6. adressing the WML DTD

file:///c:/java/tomcat401/webapps/xmlwebgui/DTD/wml/wml1.dtd

The advantage of this is that it is very fast and requires no HTTP transfer. The disadvantage is that
the created XML files are not distributable unless on the client's computer there is the DTD at the
same path.

• Internal HTTP reference. The recommended adressing of DTD is via HTTP, but to your own
server. (Or the server XML Web GUI is running on).

Example 3.7. adressing the Simplesite DTD

http://127.0.0.1:8080/xmlwebgui/DTD/simplesite/page.dtd

If you repace 127.0.0.1 with the ip-adress or domain-name of your server, the the DTD will be
available for validating as long as your server is running and XML Web GUI will not need a net-
work conncection to validate the files.

Using custom templates
What is a template. Templates are valid XML files with a reference to a DTD.

You can use any valid XML file with a reference to a DTD as template. The template that will be opened can be
specified by the URL-parameter template.

Defining own Cascading Stylesheets
For each DTD you can assign a CSS styleseet. This stylesheet can control how an element will be displayed in
XML Web GUI 's editing window.

The rules are quite simple. For every element defined in the DTD you can add a style rule by typing

Chapter 3. Customizing xmlwebgui

13

http://www.zvon.org/xxl/DTDTutorial/General/book.html
http://www.zvon.org/xxl/DTDTutorial/General/book.html
http://www.zvon.org/xxl/DTDTutorial/General/book.html
http://www.oasis-open.org/committees/docbook/xml/4.1.2/docbookx.dtd
file:///c:/java/tomcat401/webapps/xmlwebgui/DTD/wml/wml1.dtd
http://127.0.0.1:8080/xmlwebgui/DTD/simplesite/page.dtd

div.divnameOfTheElement {
your style rules

}

For the element html of the XHTML DTD the code will look as following:

Example 3.8. DTDstyle for XHTML

.divhtml {
background:#996633;

}

changing XML Web GUI's global appearance. In the installation directory of XML Web GUI you will find a
file called editor.css. You can also modify this file to make XML Web GUI fitting your needs.

Modifying the entry page
This is quite obvious. You can replace the entry page by every other html page you like.

Defining own XSL Stylesheets
With changing the XSL stylesheets you can funadmentally change XML Web GUI's appearance.

Caution

A lot of XML Web GUI's application logic lies in a defined arrangement of html tags. If you change
the XSL stylesheets, XML Web GUI may not work any more.

FIXME [http://info.astrian.net/jargon/terms/f/FIXME.html]

Chapter 3. Customizing xmlwebgui

14

http://info.astrian.net/jargon/terms/f/FIXME.html

Chapter 4. Building xmlwebgui from source code

Requirements for building from source

• The sources. The sources can be obtained at the xmlwebgui website [http://].

• A Java Software Development Kit (SDK). Most common the the Sun Java Software Development Kit, look
at java.sun.com [http://java.sun.com] for further information.

• servlet.jar this java archive contains all classes and interfaces needed for compiling the servlet-spe-
cific part of xmlwebgui. It is included in your servlet engine.

• xalan.jar and xercesImpl.jar and xml-apis.jar and xmlParserAPIs.jar This files
are needed for the xml-specific part of xmlwebgui They are included in the source release of xmlwebgui, but
it is useful to download Apache Xalan from the Apache Software Foundtaion [http://xml.apache.org] be-
cause you will also need a xslt engine for transforming the documentation.
For transforming the documentation you can use any other XSLT-engine. A very good engine is Saxon
[http://saxon.sourceforge.net] by Michael Kay.

• Apache Ant. This build tool from the Apache Software Foundtaion can be found at the Jakarta Project Site
[http://jakarta.apache.org].

• For transforming the documentation you will also need to download the docbook xslt stylesheets from The
Docbook Open Repository [http://docbook.sourceforge.net].

Building XML Web GUI.

1. Download the lastest source distribution from the XML Web GUI homepage
[http://xmlwebgui.sourceforge.net]

2. Unpack the distribution to a directory and enter this directory on the command line

3. Then type ant war for building the web-archive for JDK1.3 or type ant war_le for building the web-
archive for Java 1.4

4. continue the installation as described here: Chapter 1

Building the documentation.

1. download and unpack the documentation source files.

2. Use your favorite XSLT-emgine to transform documentation.xml using the docbook sytlesheets to
HTML or XSL:FO.

FIXME [http://info.astrian.net/jargon/terms/f/FIXME.html]

Chapter 4. Building xmlwebgui from source code

15

http://
http://
http://java.sun.com
http://xml.apache.org
http://xml.apache.org
http://xml.apache.org
http://saxon.sourceforge.net
http://jakarta.apache.org
http://jakarta.apache.org
http://jakarta.apache.org
http://docbook.sourceforge.net
http://docbook.sourceforge.net
http://docbook.sourceforge.net
http://docbook.sourceforge.net
http://xmlwebgui.sourceforge.net
http://xmlwebgui.sourceforge.net
http://xmlwebgui.sourceforge.net
http://xmlwebgui.sourceforge.net
http://xmlwebgui.sourceforge.net
http://info.astrian.net/jargon/terms/f/FIXME.html

Appendix A. Apache Software License
Version 1.1
Copyright © 2000 The Apache Software Foundation. All rights reserved.

Copyright 2000 The Apache Software Foundation. All rights reserved. © Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are met:

1. 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the fol-
lowing disclaimer.

2. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. 3. The end-user documentation included with the redistribution, if any, must include the following ac-
knowledgment:

"This product includes software developed by the Apache Software Foundation
(http://www.apache.org/ [http://www.apache.org])."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party ac-
knowledgments normally appear.

4. 4. The names "Apache" and "Apache Software Foundation" must not be used to endorse or promote prod-
ucts derived from this software without prior written permission. For written permission, please contact
apache@apache.org.

5. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foundation, please see <http://www.apache.org/
[http://www.apache.org]>.

Portions of this software are based upon public domain software originally written at the National Center for Su-
percomputing Applications, University of Illinois, Urbana-Champaign.

Appendix A. Apache Software License

16

http://www.apache.org
http://www.apache.org

	xmlwebgui Documentation
	Table of Contents
	Chapter 1. Installation
	System Requirements
	Getting xmlwebgui
	Deploying the xmlwebgui web application

	Chapter 2. Running the examples
	The modified document

	Chapter 3. Customizing xmlwebgui
	URL parameters
	Setting the servlet's parameters
	setting the rootDir parameter
	User-Management and security
	the users.xml configuration file

	exit and error URL

	Using custom DTDs
	Using custom templates
	Defining own Cascading Stylesheets
	Modifying the entry page
	Defining own XSL Stylesheets

	Chapter 4. Building xmlwebgui from source code
	Appendix A. Apache Software License

